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Abstract

We show how to use some commands in MAGMA [MAGMA] to
investigate finite group representations. In particular, we study the
representations of As. This note is written for the first-time user
of MAGMA but assumes that the reader knows basic things about
groups and representations.

Contents
1 Introduction
2 Entering groups

3 Representations of Aj
3.1 Character valuesfor As . . . . . . . . ... ... ... ...,
3.2 Induction . . . .. .. . .. ..

4 Orbital integrals

5 Principal series of SL(2,4)
5.1 Representations of SL(2,4) . . ... ... ... ... .. ...
5.2 Induced representations of SL(2,4) . . .. ... .. ... ...
5.3 Principal series, revisited . . . . ... o oL

6 Construction of PSL(2,5) as a quotient

7 As as a finitely presented group

1

11
15
16

19

20
20
22
23

24

24



1 Introduction

Very briefly, in this note we shall first learn how to enter a finite group, how
to list their elements, their conjugacy classes, and their centralizers. Then
we shall study their representations, more precisely their characters !. We
shall also study the induced representations ind% x, where H is a certain

subgroup of 7, and G is either A5 or its 2-fold cover SL(2,5). We shall

discuss As from the following points of view:
e as a permutation group,
e as a matrix group (SL(2,4)),
e as the quotient of a matrix group (PSL(2,5)),
e as a finitely presented group (< a,b|a?* =0 = (ab)’ =1 >).

MAGMA [MAGMA] is a non-free? software package “designed to solve
computationally hard problems in algebra, number theory, geometry and
combinatorics”. The name “magma” is explained by another quote from the
MAGMA documentation: “The primary concept in the design of the Magma
system is that of a ‘magma’. Following Bourbaki, a magma can be defined as
a set with a law of composition.” The MAGMA project has been headed by
John Cannon in the Department of Mathematics at the University of Sydney
in Australia. It now has many contributors from all over the world (see the
section “Acknowledgements” in the documentation). There is also a manual
(both in latex and in html) and a nice introduction (in dvi and ps), both
including many examples.

It will be assumed that you have MAGMA up and running. Sometimes a
MAGMA command will be given but the MAGMA output will not be given
(though quite often we give both), since it will be assumed you can see it
yourself. Many commands assume that the commands previously discussed
have already been entered.

Once you start MAGMA, you will see a banner like this:

1Until the last section, we shall assume all the word “representation” refers to a finite
dimensional complex representation. The last section briefly discusses modular represen-
tations.

2Not free but not for profit either. The cost of the license is put into further develope-
ment of the package.



Magma V2.7-2 Mon Sep 4 2000 08:00:45 on alm [Seed = 76461011]
Type ? for help. Type <Ctrl>-D to quit.

From this you already know the date, that I am on a machine named alm,
and that I have started MAGMA, version 2.7.2.

I recommend you log every session. To do this, type

> SetLogFile("/home/wdj/magma27/altern_gp.log");

for example (we will be doing an example based on the alternating group As,
so the file name will be called altern_gp.log). You don’t type “ >”, by
the way, as that is simply the MAGMA cursor beginning each line. Also, be
sure you save the log to a directory you have read-wite access to.

2 Entering groups

To begin, let us enter the alternating group into MAGMA by typing
>A5:=AlternatingGroup(5);
You can see by typing #A5; that it has 60 elements. Its elements are obtained
by typing
>a5:=Set (A5);
Since As = PSL(2,F,), you can also enter this group into MAGMA by the
command
>PSL24:=PSL(2,4);
if you prefer. This will also be a permutation group in MAGMA. On the
other hand, if you enter SL(2,F4) using
>SL24:=SL(2,4);
(which is the same group after all, since we’re in characteristic 2), you will
get a group of matrices, not a permutation group, whose elements are written
in the form

[$.1°2 0]
[ 0 $.17,
[$.1°2 0]
[$.172 $.1],



[$.1"2 0]

[ $.1 $.1],
[$.172 0]
[ 1 $.1],

<stuff omitted>

You may also enter this group as
>PSL25:=PSL(2,5);

if you wish. It is also a permutation group in MAGMA and by typing
>Set (PSL25) ;

you find its elements are

{
(1, 4, 6, 3, 2),
(1, 4, 3, 2, 5),
(1, 4, 2)(3, 6, 5),
(1, 3, 4, 2, 8),
(1, 3, 5)(2, 4, 6),
(1, 5, 6, 2, 3),
(1, 6, 2)(3, 4, 5),
(1, 6, 4)(2, 5, 3),

(1, 5)(3, 6),

(1, 2)(5, 6),

(2, 6)(3, 5),

(1, 5, 4)(2, 6, 3),
(2, 4)(3, 6),

(2, 4, 6, 5, 3),
(1, 3)(2, &),
Id(PSL25),

(1, 2, 6, 4, 5),
(1, 6, 5, 2, 4),

(1, 5! 4, 6, 2),
(1! 5! 2! 3! 4),
(1, 2, 5, 3, 6),

(1, 6)(2, 3),

(1, 4)(2, 6),

(1, 6, 3)(2, 5, 4),
(1, 4, 5, 6, 3),



(1, 4)(3, 5),
(2, 6, 3, 4, 5),
(1, 3, 4)(2, 5, 6),

(1, 5, 3)(2, 6, 4),
(1, 3, 2)(4, 5, 6),
(1, 6, 4, 3, 5),
(1, 2, 4)(3, 5, 6),
(1, 2, 4, 5, 3),
(1, 5, 2)(3, 6, 4),
(2, 5)(4, 6),

(1, 3, 2, 6, 5),
(1, 3, 6, 5, 4),
(2, 3)(4, 5),

(1, 2, 3, 6, 4),
(1, 5, 3, 4, 8),
(1, 5)(2, 4),

(1, 2, 6)(3, 5, 4),

(1, 4, 5)(2, 3, 6),
(1, 4, 2, 5, 8),
(1, 3, 5, 4, 2),
(1, 6, 2, 4, 3),
(1, 3, 6)(2, 4, 5),
(2, 5, 4, 3, 8),

(2, 3, 5, 6, 4),
(1, 3)(4, 6),
(1, 6
(1, 2, 5)(3, 4, 6),
(1, 6, 5)(2, 3, 4),
(1, 4, 3)(2, 6, 5),
(1, 2, 3)(4, 6, 5),
(1, 5, 6)(2, 4, 3),
(1, 2)(3, 4),

(1, 4, 6)(2, 3, 5),
(1, 6)(4, 5),

(3, 4)(5, 6)

All these groups are known to be isomorphic (probably a proof can be
found in [R] but I'm not sure). One way to see this using MAGMA is to type



>IsSimple(A5); #A5;
>IsSimple(PSL25); #PSL25;
>IsSimple(SL24); #SL24;
They are all simple groups of size 60, so by the classification of simple groups
they must be isomorphic
Next, we compute all the conjugacy classes of As:
> A5_classes:=ConjugacyClasses(A5);
MAGMA will reply with something like

Conjugacy Classes of group A5

[1] Order 1 Length 1
Rep Id(A5)
[2] Order 2 Length 15

Rep (1, 2)(3, 4)

[3] Order 3 Length 20
Rep (1, 2, 3)

[4] Order 5 Length 12
Rep (1, 2, 3, 4, 5)

[5] Order 5 Length 12
Rep (1, 3, 4, 5, 2)

This is a list of classes, sizes and representatives. To get a representative of
an element z in As, you can use the ClassRepresentative command. For
example, if z = (1,2,4), type

ClassRepresentative(A5,A5!(1,2,4));

Here is a “coersion”: to force MAGMA to recognize (1,2,4) as an element
of As you preface it by juxtaposing A5! before it. Now let us find all the
non-trivial centralizers in As, up to conjugacy. Type

> Cl:=Centralizer(A5,A5!(1,2)(3,4)); C1;
Permutation group Cl1 acting on a set of cardinality 5
Order = 4 = 272



(1, 3)(2, 4

(1, 2)(@3, 4
> C2:=Centralizer(A5,A5!(1,2,3)); C2;
Permutation group C2 acting on a set of cardinality b5
Order = 3

(1, 2, 3)
> C3:=Centralizer(A5,45!(1,2,3,4,5)); C3;
Permutation group C3 acting on a set of cardinality 5
Order = 5

(1, 2, 3, 4, 5)
> C4:=Centralizer(A5,A5!(1,3,4,5,2)); C4;
Permutation group C4 acting on a set of cardinality b5
Order = 5

(1, 3, 4, 5, 2)

MAGMA returns the groups, at least the groups in MAGMA’s notation, and
their sizes (4,3,5,5, resp.). Another way is to type

> S:=SetToIndexedSet(Set(A5_classes));
> cent_ab:={ Centralizer(A5,S[i][3]) : i in [1..#S]}
> cent_ab;
{
Permutation group acting on a set of cardinality 5
Order = 5
(1, 3, 4, 5, 2),
Permutation group acting on a set of cardinality 5
Order = 60 = 272 * 3 * 5
(1, 2)(4, 5)
(2, 3)(4, 5)

(3, 4, 5),
Permutation group acting on a set of cardinality 5
Order = 5

(1, 2, 3, 4, 5),
Permutation group acting on a set of cardinality 5
Order = 4 = 272

(1, 3)(2, 4)

(1, 2)@3, 4),
Permutation group acting on a set of cardinality 5
Order = 3



(1, 2, 3)

Up to conjugation, there are no other centralizers in As. To find the elements
in (' for example, type

> Set(C2);
or > SetToIndexedSet(Set(cent_a5))[5]; (note: MAGMA has reordered
elements so that Cy corresponds to the 5th element in the set cent_a5).
MAGMA will return to the first command something like

{(1, 3, 2), (1, 2, 3), Id(c2)}

To the second command, MAGMA will return

Permutation group acting on a set of cardinality 5
Order = 3
(1, 2, 3)

Next, we compute their normalizers in As:

> N1:=Normalizer(A5,C1); N1i;
Permutation group N1 acting on a set of cardinality 5
Order = 12 = 272 * 3

(1, 3)(2, 4
(1, 2)(@, 4
(2, 4, 3)

> N2:=Normalizer (A5,C2); N2;
Permutation group N2 acting on a set of cardinality 5
Order = 6 = 2 * 3
(1, 2, 3)
(2, 3)(4, 5
> N3:=Normalizer (A5,C3); N3;
Permutation group N3 acting on a set of cardinality 5
Order = 10 = 2 * b
(1, 2, 3, 4, 5)
(2, 5)(3, 4
> N4:=Normalizer (A5,C4); N4;
Permutation group N4 acting on a set of cardinality 5



Order = 10 = 2 * 5
(1, 3, 4, 5, 2)
(2, 3)(4, 5

By typing
> IsAbelian(C1);,
to which MAGMA replies true, we find out that C is abelian. (It a group
of size 4, so of course it is abelian!) Similarly, we find that all the centralizers
are abelian (so As is a commutative transitive group) and all the normalizers
are non-abelian.

Now, it turns out that any commutative transitive group G has the follow-
ing property: if C;C" C G are any two centralizers then either CNC' = {1}
(i.e., are “disjoint”) or C' = C’. To check this property for G = As and
C' = (', it suffices to type

> [#(C1 meet C1~(a5[il)) i in [1..#a51];

[1,4,4,1,1,1,1,4,1, 1,1, 4, 1,1, 1, 1,1, 1,1,1,1, 4, 1,1, 1,1,
1, 1,1, 1,1, 4, 1,1, 1, 1,1, 1,1, 4, 4,1, 1, 1,1, 4, 4,1, 1,1, 1,1, 1,
1, 1,1, 4,1, 1, 41

> [#(C1 meet €2~ (a5[il)) i in [1..#a51]1;

[1,1,1,1,1,14,1,1,1,1, 1,1, 1,1, 1, 1,1, 1,1,1, 1,1, 1,1, 1,1,
1, 1,1,1,1,1,14,1,1,1,1, 1,1, 1, 1,1, 1,1,1,1,1,1,1,1, 1,1, 1,
1, 1,1, 1, 1,1, 11

> [#(C1 meet €3~ (a5[il)) i in [1..#a51]1;

[i,1,1,1,1,14,1,14,1,1, 1,1, 1,1, 1,1,1,1,1,1,1,1, 1,1, 1,1,
1, 1,1, 1,14, 1,4, 1,1, 1,1, 1,1, 1, 1,1, 1,1,1,1,1,1, 1,1, 1,1, 1,
1, 1,1, 1,1, 1, 11

> [#(C1 meet C4~(a5[il)) i in [1..#a51]1;

[+, 1,1¢,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1, 1,1,
1, 1,1,1,1,1,14,1,1,1,1, 1,1, 1, 1,1, 1,1,1,1,1,1,1,1, 1,1, 1,
1, 1,1, 1, 1,1, 11

All the elements of each list L end up being either 1 (if their intersection
is trivial) or 4 (if they are equal). For example, to see which = satisfies
[CLNCY| = 4, type

Ci11_big:=[ab[i] : i in [1..#a5] | 1 1t C11[il];

Note that the output is precisely the elements of Ni, as expected
( Set(N1) eq Set(Cii_big); returns true).

Type

> RightTransversal(N1,C1);
{@



Id(N1),

(2, 4, 3),

(2, 3, 4)
Q%

to get the coset representatives of
Cr = {0, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) }
in

Ny = {()7 (27374)7 (27473)7(
(1,3,4),(1,3)(2,4),

Thus the representatives of Ni/Cy are {1,(2,3,4),(2,4,3)} and their cosets
are:

1,2
(1,4,2),

> ri:=[Cl*n : n in SetToIndexedSet(Set (RightTransversal(Ni,C1)))];

>rl;

[ RightCoset (GrpPerm: Ci, Degree 5, Order 2°2 % (2, 3, 4)), RightCoset(GrpPerm: Ci, Degree 5,
Order 272 * Id(N1)), RightCoset(GrpPerm: Ci, Degree 5, Order 272 x (2, 4, 3)) ]

Remark 1. If instead you type
> CosetTable(N1,C1);
then MAGMA returns
Happing from: Cartesian Product<{ 1 .. 3 }, GrpPerm: Ni, Degree 5, Order 2°2 % 3> to {1 .. 3}
$1 $2 $3 -$3
1. 1 1 2 3

2. 2 2 3 1
3. 3 3 1 2

What does this mean? Recall Ny has generators (1,2)(3,4),(1,3)(2,4), (2,4,3)
(If you don’t believe me, type
> Generators(N1);

which will get MAGMA to tell you this.) For each generator and its inverse
MAGMA computes its effect on the cosets Ny/C} as a permutation. There are
3 = |Ny/C4| cosets, so the permutation is in Sz, in this case. In particular, we
find that the CosetAction command tells us that the permutation representation
of Ny acting on Ny/C is isomorphic to a cyclic subgroup of Ss:

> CosetAction(N1,C1);
Mapping from: GrpPerm: N1 to GrpPerm: $, Degree 3, Order 3
Permutation group acting on a set of cardinality 3

10



Order = 3

Id($)

Id($)

(1, 2, 3)
Permutation group acting on a set of cardinality 5
Order = 4 = 272

(1, 3)(2, 4

(1, 2)@3, 4

3 Representations of Aj

Now we turn to representation theory. Since the centralizers are abelian in
this case, all its irreducible representations are 1-dimensional. For the set of
all irreducible representations of C';, you may type either

> Cl_repns:=CharacterTable(C1);
(which returns the irreducible characters of the group), or

> Cil_repns:=LinearCharacters(C1);
(which returns all the 1-dimensional irreducible characters of the group,
which is all of them since €} is abelian). You can see the output (which
is MAGMA’s notation for a character of C4) is the same in either case. Let
us abbreviate the characters of C'; by

M1 (: 1)7 Hi2, H1,3, H14.

The set of irreducible characters of 'y is denoted C7.
We obtain

> Cl_repns:=CharacterTable(C1); Cl_repns;

Character Table of Group C1

Class | 1234
Size | 1111

11



Order | 1222

p = 2 1111
X.1 + 1111
X.2 + 1 1-1-1
X.3 + 1-1 1-1
X.4 + 1-1-1 1
> [Cl_repns[i] : i in [1..4]1];

[(1111111)3(1311_11_1)3(11_1113_1)3(13_13_111)]

What does this mean? First, we find the conjugacy classes of each group
C'1,...,C4. Since each of these groups is abelian, the conjugacy classes cor-
respond to the elements of the groups themselves. Consider for example
the character C1_repns[2]; of ) which we shall denote by p. This is
a homomophism p : ¢y — C*. The vector entry ( 1, 1, -1, -1 ) in-
dicates the values of this character p on the classes of ;. For example,
ul(1,2)(3,4)) = —1.

Characters of the other centralizers may be determined similarly using

MAGMA.

> C2_repns:=CharacterTable(C2); C2_repns;

Character Table of Group C2

Class | 1 2
Size | 1 1 1
Order | 1 3
p = 3 1 1 1

12



X.2 0 1 J-1-J
X.3 0 1-1-J J

Explanation of Symbols:
J = Root0fUnity(3)

> C3_repns:=CharacterTable(C3); C3_repns;

Character Table of Group C3

Class | 1 2 5
Size | 1 1 1 1 1
Order | 1 5 5 5 5
p =5 1 1 1 1 1

+ 1 1 1 1 1
0 1 Z1 Z1#2 Z1#3 Z1#4
0 1 Z1#2 Z1#4 71 Z1#3
0 1 Z1#3 71 Z1#4 7Z1#2
0 1 Z1#4 7Z1#3 Z1#2 71

# denotes algebraic conjugation, that is,
#k indicates replacing the root of unity w by w'k

Z1 = zeta_b where zeta_5 is RootO0fUnity(5)

13



> C4_repns:=CharacterTable(C4); C4_repns;

Character Table of Group C4

Class | 1 2 3 5
Size | 1 1 1 1
Order | 5 5
p =5 1 1 1 1 1

+
0 1 Z1 Z1#2 7Z1#3 Z1#4
0 1 Z1#2 Z1#4 71 Z1#3
0 1 Z1#3  Z1 Z1#4 Z1#2
0 1 Z1#4 7Z1#3 Z1#2 71

# denotes algebraic conjugation, that is,
#k indicates replacing the root of unity w by w'k

Z1 = zeta_b5 where zeta_5 is RootO0fUnity(5)

A question which arises later (in the next section) when we induce these
characters to As is the following. Is the character
C1_repns[2]
of C'1, call it p, invariant under the action of the normalizer? In fact, since
N1/Cy is cyclic we find that (%3 £ p, so the stabilizer of p in N;/Cy is
trivial. We call such a character y “regular”.

14



Let us abbreviate the characters of C'y by
H2.1 (221)7 H22, 23,
the characters of C'5 by
M3 (221), H3,2, 33, 34,
and the characters of C4 by
Han (221), Ha2, a3, [H4.4,

3.1 Character values for A;

The representations of As are obtained by typing
A5_repns:=CharacterTable(A5);
MAGMA will reply

Character Table of Group A5

Class | 1 2 3 4 5
Size | 1 15 20 12 12
Order | 1 2 3 5 5
p = 2 1 1 5 4
p = 3 1 2 1

p = 5 1 2 11
X.1 + 1 1 1 1 1
X.2 + 3-1 0 Z1 Z1#2
X.3 + 3 -1 0 Z1i#2 Z1
X.4 + 4 0 1 -1 -1
X.5 + 5 1 -1 0 0

15
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Explanation of Symbols:

# denotes algebraic conjugation, that is,
#k indicates replacing the root of unity w by w'k

Z1 = -zeta_5"3 - zeta_5"2 where zeta_5 is RootO0fUnity(5)

Let us abbreviate them by
T (: 1), mo, T3, g, 5.

The set of irreducible characters of A5 is denoted AZ.

The notation of the conjugacy classes agrees with that of the ATLAS
[Atlas]. In particular, the class of the identity element is the first one; thus
the degree of a character is the character value in column 1. The other values
depend on the ordering of the conjugacy classes (in A5_classes) and on the
ordering of the irreducible characters (in A5_repns).

The individual values of the characters are obtained using MAGMA’s
built in evaluation function. The command A5_repns[i] (A5!x) returns the
value of tr m;(x) at the permutation z. For example,

A5_repns[4] (A5!(1,2)(3,5));
A5_repns[5] (Id(A5));

A5_repns[4] (A5!(1,2,3));

VvV = V 01l v O V

A5_repns[4] (A5!(1,2,3,4,5));
-1

3.2 Induction

Now, let us induce the first (trivial) character of C; from Cy to As:
> indl:=Induction(Cl_chars[1],A5);

16



To study reducibility of representations * using MAGMA, define the
(Schur) scalar product of a class function y with a class function ¥ on a
finite group G by

(x;¢) = |1?| > x(@)wlg™).
9€G
Recall, the scalar product of a character (i.e., the trace of a possibly reducible
representation of () with itself is 1 if and only if it is irreducible.

Is this induced representation irreducible? Type either

> IsIrreducible(indl);
(to which MAGMA returns false) or

> InnerProduct(indl,indl);
(to which MAGMA returns 6). So, we now know indéfl is not irreducible.
What is its decomposition into irreducibles?

indéi’l o Z m(m)m, m(n) € Z.

TEAE

To determine the multiplicities m(7) it suffices (thanks to Schur orthogonal-
ity) to type
m:=[InnerProduct(indl,A5_repns[i]) : i in [1..#A5_repns]l];
MAGMA returns [ 1, 0, 0, 1, 2 1, so, in the notation of 3.1,
indéf,um = indéfl =+ my o+ 2ms.

Likewise, by typing

ind2:=Induction(C1_repns[2],A5);
InnerProduct (ind2,ind2);

ind3:=Induction(C1_repns[3],A5);
InnerProduct (ind3,ind3);

ind4:=Induction(C1_repns[4],A5);
InnerProduct (ind4,ind4);

BV VIRV VRV YV

3More precisely, reducibility of characters of representations.

17



we find that none of the induced representations indéi’,u are irreducible. In-

deed, MAGMA gives
Z.T'Ldéf/,blg = Z.T'Ldéf/,LLg = Z.T'Ldéf/,blA = T2 + T3 + T + 5.

Exercise: By typing ind1l:=Induction(C2_chars[1],A5);, ... show that
none of the induced representations indég’,u are irreducible.

Answer: By entering commands similar to those explained above, MAGMA
tells us that

A LA A~
zndcjjlum = mdcil = 4 w4 w3 + 274 + 75,

A A
mdaﬁjﬂm o zndcg’,um =g+ w3+ Ty + 275,

Exercise: Show that none of the induced representations indég’,u or indéi’,u
are irreducible either.

Answer: By entering commands similar to those explained above, MAGMA
tells us that

. Ag e A5y~ s gAs e At~
deSMSJ = zndcsl o znd04,u471 = md041 = 4wy + w3 + 7,

~

. A5 o A5 . A5 . A5 ~
zndCB,ugg = deS U35 znalc4 fa3 = zndc4 fag = Ty + Ty + 75,

. As . As ~ - jAs o As ~
deSMS,S = malc3 p3a = de4 Hag = znd04 fas = T3 + T4+ Ts.

Another way to determine whether or not these induced representations
(or any other ones you might happen to run across) are irreducible is simply
to compare their values with those given by the character table of A5 as given
in §3.1. The Frobenius formula for the character of an induced representation
in this case becomes particularly simple.

Lemma 1. Let G be a finite commutative transitive group, C' a centralizer
in G, p € C* a character, and let # = ind%u. Then

1G]

=1
[k g
tI‘?T(g) = ﬁ ZnGNG(C) M(n_lcn)7 ceE CON](Q, G) nc 7£ ®7 g 7£ 1

18



4 Orbital integrals

To compute orbital integrals in MAGMA, you must write a program (called a
“function” in MAGMA; a “procedure” in MAGMA does not return a value).

> function AddList (L)

function> total:=0;

function> for 1 in [1..#L] do
function|for> total:=total+L[i];
function|for> end for;

function> return total;
function> end function;

> function orbital_integral(g,f)
function> vals:=[f(x"(-1)*g*x) : x in ab];
function> return AddList(vals)/#a5;
function> end function;

Here f is an as yet undefined function on As. First, type

> function class_fen_A5(x,y)
function> if x in Class(A5,y) then
function|if> return 1;
function|if> end if;

function> return 0;

function> end function;

Now type

> function £(x)

function> return class_fen_ A5(x,A5!(1,2)(3,5))+3*class_fen_A5(x,A5!(1,2,3))-cl\
ass_fen_A5(x,Id(45));

function> end function;

The orbital integral of this function on As is computed by typing
> orbital_integral(A5!(1,2,3),f);
to which MAGMA responds 3.

19



5 Principal series of SL(2,4)

Here we wish to use MAGMA to examine which (if any) characters of the

standard Borel subgroup B = {( S : > in G = SL(2,4) induce irreducibly
to G.

As was indicated already, we may enter S1(2,4), as a matrix group, into
MAGMA by typing
> SL24:=SL(2,4);
but then we would have the problem of determining which subgroup of GG
the Borel is. To find out which group is the Borel subgroup of this matrix
group, let us first list all the entries whose lower left corner entry is a 0:

S:=SetToIndexedSet (Set (SL24));

LO:=[ i : i in [1..60] | S[i1[2,1] eq 0 1;

Borel:=[S[i] : i in LO];

B:=MatrixGroup< 2, GF(4) | Borel>;

LOO:=[ 1 : i in [1..60] | (S[i][1,2] eq 0) and (S[il1[2,1] eq 0)];
Diag:=[S[i] : i in L0O];

A:=MatrixGroup< 2, GF(4) | Diag>;

VvV V V V V Vv VvV

5.1 Representations of SL(2,4)
The irreducible representations of B and G are obtained by typing

> A_repns:=CharacterTable(A);
> B_repns:=CharacterTable(B);
> SL24_repns:=CharacterTable(SL24);

We abbreviate these irreducible representations of B by

P (:1)7 Vo, Y3, Y4

Note 1,19, 13 are characters of A extended trivially to B. We may abbre-
viate these irreducible representations of G by

A ! / / !
7T1 (_ 1)7 7T27 7T37 ’,’T4, 7T5'

To relate these representations to those obtained in the previous section,
we look at the conjugacy classes of G.
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> A_classes:=Classes(A);
> B_classes:=ConjugacyClasses(B);
> SL24_classes:=Classes(SL24);

To get class representatives, type

> a_classes:=SetToIndexedSet (Set(A_classes));
> a_class_reps:=[a_classes[i][3] : i in [1..#a_classes]];
> a_class_reps;

L
[ $.1 0]
L 0$.1°21,
[$.1°2 0]
[ 0 $.17,
L 1 0]
L 0 1]

]

Exercise: Obtain class representatives for B and SL(2,4).
Answer

> b_class_reps;

L
L 1¢$.1°2]
L 0 1],
[$.172 0]
[ 0 $.17,
[ $.1 0]
L 0$.1°21,
L 1 0]
L 0 1]

]

> s124_class_reps;

L
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L 1 0]

[ $.1 1],
L 1 1]
L 1 o],
[ $.1 $.1°2]
[ $.1 o],
[ $.1 1]
[$.1°2 1],
L 1 0]
L 0 1]

By comparing the character values of these 7/’s with those in the previous
section, we find that under the above correspondence of conjugacy classes,
m; matches with 7/ in the sense that their characters are equal on the corre-
sponding classes, 1 = 1,2, 3,4, 5.

5.2 Induced representations of SL(2,4)

The induced representations from B to G are obtained by typing

> rhol:=Induction(B_repns[1],G);
> rho2:=Induction(B_repns[2],SL24);
> rho3:=Induction(B_repns[3],SL24);
> rho4:=Induction(B_repns[4],SL24);
To determine their reducibility, type
> ml:=[InnerProduct(rhol,x) : x in SL24_repns]; mi;
(1, 0, 0, 1, 0]
> m2:=[InnerProduct (rho2,x) : x in SL24_repns]; m2;
Lo, 0,0,0,1]
> m3:=[InnerProduct(rho2,x) : x in SL24_repns]; m3;
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Lo, 0, 0, 0, 11
> m4:=[InnerProduct(rho2,x) : x in SL24_repns]; m4;
Lo, 0, 0, 0, 11

This tells us that ind% 1 is reducible. The irreducible representations
ind$ by, ind$ 1b3 are the “principal series” representations. It also tells us
that the induced representation ind% v, is reducible and vanishes on the
“regular hyperbolic set” A — {1}.

5.3 Principal series, revisited

We have seen all the principal series representations but their construction
wasn’t the usual one. Usually, on starts with a character of A then extends

to B and induces. MAGMA can do this.

LO1:=[ 1 : i in [1..60] | (S[i][1,1] eq 1) and (S[il1[2,1] eq 0)];
Nil:=[S[i] : i in LO1];
N:=MatrixGroup< 2, GF(4) | Nil>;
A0,f:=quo<B | N>;
t;
Mapping from: GrpMat: B to GrpPerm: AOQ
> AOQ;
Permutation group A0 acting on a set of cardinality 3
(1, 2, 3)
(1, 3, 2)
(1, 2, 3)
I1d(A0)
(1, 3, 2)
(1, 2, 3)
(1, 3, 2)
I1d(A0)
(1, 2, 3)
(1, 3, 2)
I1d(A0)
> #AO0;
3
> AO_repns:=CharacterTable(A0);

vV V V VvV VvV
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> B_repl:=LiftCharacter(AO_repns[1],f,B);

> B_rep2:=LiftCharacter(AO_repns[2],f,B);

> B_rep3:=LiftCharacter(AO_repns[3],f,B);

> ind1l:=Induction(B_repl,SL24);

> ind2:=Induction(B_rep2,SL24);

> ind3:=Induction(B_rep3,SL24);

> ml:=[InnerProduct(indl,x) : x in SL24_repns]; ml;
(1, 0, 0, 1, 0]

> m2:=[InnerProduct(ind2,x) : x in SL24_repns]; m2;
Lo, 0,0,0,1]

> m3:=[InnerProduct(ind3,x) : x in SL24_repns]; m3;
Lo, 0,0,0,1]

6 Construction of PSL(2,5) as a quotient

We shall first work with SL(2,5) then mod out by its center.

Type

> SL25:=SL(2,5);
and then type
> Z_SL25:=Center(SL25);
to enter its center. As we know, PSL(2,5) = As.

How do you enter SL(2,5)/7 (or any quotient group, for that matter)
into MAGMA? It is easy if you know the right command. First, you must
have a group and a normal subgroup (actually, MAGMA allows more general
constructions which we won’t need here). The quotient group PSL(2,5) is
simply given by

> G:=SL25/Z_SL25;
It is just that easy. The elements are permutations.

7 Aj as a finitely presented group
The group As has finite presentation [Atlas]
< abla®=b=(ab)’=1 >.

To enter this into MAGMA, type
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> F2<a,b> := FreeGroup(2);
> rels:={a"2=Id(F2), b~3=Id(F2), (a*b)"5=Id(F2)};
> G:=quo<F2|rels>;

To reinterprete this as a permutation group, type:

> T:=CosetTable(G, H);
> GO:=CosetTableToPermutationGroup(G,T);
> GO;
Permutation group GO acting on a set of cardinality 60
(1, 2)(3, 7)(4, 8)(5, 9)(6, 10)(11, 19)(12, 20)(13, 21)(14, 22)(15, 23) (16, 24)(17, 25)(i8,
26) (27, 37)(28, 38)(29, 30)(31, 39)(32, 40)(33, 41)(34, 35)(36, 42)(43, 54) (44, 45)(46,
55) (47, 56)(48, 49) (50, 51)(52, 57)(53, 58) (59, 60)
(1, 3, &¥(2, 5, 6)(7, 11, 12)(8, 13, 14)(9, 15, 16)(i0, 17, 18)(19, 26, 27)(20, 28, 29)(21, 30,
31)(22, 32, 23)(24, 33, 34)(25, 35, 36)(37, 43, 44)(38, 45, 46)(39, 47, 48)(40, 49, 50)(41,
51, 52)(42, 53, 54)(55, 59, 56)(57, 60, 58)
> #GO;
60
> IsSimple(GO);
true

This brief paper has only given an overview of some of the most basic
features of MAGMA. For more, see the documentation [MAGMA].

Acknowledgements: 1 thank John Cannon for several comments and sug-
gestions for improvements.
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